
December 2007 www.stsc.hill.af.mil 19

In today’s software-oriented world, soft-
ware ownership frequently changes. It is

difficult, if not sometimes impossible, to
keep track of who has a certain piece of
software at any given time. This presents a
problem for those who wish to keep the
software internal operations a secret.
Languages such as Java, which preserves a
lot of high-level information in its byte
code, present a problem from the stand-
point of source ownership and securing it
from program de-compilation. Releasing
Java classes can compromise sensitive infor-
mation embedded in the software, such as a
missile intercept computation. Java class
files contain the byte code instructions inter-
preted by the Java Virtual Machine (JVM).
These files are easily read by programs that
can recreate a source file from the class file.
Java obfuscation techniques were developed
to make reverse engineering harder, but
many of these techniques can be defeated.

While Java was developed to be used
on embedded systems, its popularity has
pushed it into the public as a mainstream
language. It is the view of the authors that
if the developers of a program (e.g.
defense industries) do not want its source
code reverse engineered, then Java should
not be used. Java programs cannot be pro-
tected in any manner from reverse engi-
neering. All protection will do is slow
down a determined attacker. In this article,
we describe the three major techniques of
Java obfuscation used in present state-of-
the-art tools.

Commercial obfuscation applications
generally perform three functions to secure
the Java source code. First, extra loops,
jumps, or even additional classes are added
to change the control flow of the program
so that an attacker has extra difficulty in
understanding the program. Second,
Package/Class/Method/Field names are
renamed so they no longer state what they
are for (e.g., field named ‘account_balance’
is now ‘b’). Finally, any text strings con-
tained in the program are encrypted.

Obfuscation Techniques 
The following sections describe the three

major techniques of Java obfuscation used
in present state-of-the-art tools.

Control Flow Obfuscation
Control flow obfuscation is a technique
that makes use of additional code and
looping it to make it difficult to understand
what is going on in such a way that causes
an attacker to give up or confuses a tool
into producing undesired results. While
this strength is a good attempt at protec-

tion, there are semi-automated tools, such
as LOCO [1], that allow a human user to
interpret the code to distinguish between
useless code and real code. While control
flow obfuscation is not foolproof, it
increases the difficulty an attacker has
reverse engineering a program.

Name Obfuscation
Name obfuscation is used to effectively
remove any information an attacker would
gain by merely reading the name of fields.
For example, if the original developer
used meaningful names to aid develop-

ment, this would also help the attacker. By
changing the names, the meaning of the
code is harder to understand. This is quite
similar to the problem of decompiling x86
binaries. When decompiling x86 binaries
into an intermediate language, e.g. Register
Transfer Language, an attacker has to fig-
ure out the contents of the accumulator
register and how it is used. This can be
extremely tedious but not impossible.
Similarly, an attacker with a Java class file,
where the names are changed to simple
letters (e.g. ‘b’ or ‘c1’), is faced with a sim-
ilar challenge. The strength of this
method is that it removes a very useful
method of program comprehension from
the hands of an attacker. However, its
weakness is that a human using an interac-
tive deobfuscation environment, possibly
a modified LOCO equivalent program,
can discern what the variable ‘b’ means,
and the program they use could propagate
this new name ‘account_balance’ through-
out the control flow graph where ‘b’ is
used. Name obfuscation raises the level of
difficulty in reverse-engineering, but does
not make it impossible.

String Encryption
String encryption is utilized as an attempt
to secure the code for a limited period of
time. The more sensitive the information
being protected, the stronger the encryp-
tion should be. By eliminating another
source of information, obfuscation pro-
grams use this technique to increase the
level of difficulty in an attempt to prevent
deobfuscation. However, string encryp-
tion is almost useless since the key for
decryption is contained inside the pro-
gram file unless using an external key. It
has been shown that attackers have already
discovered how to decrypt these strings
[2], rendering this obfuscation technique
almost useless. Encryption is useful only if
an external key is used. This, however,
presents the classic key distribution and
management issue. Using an external key
requires securely sharing it via some
mechanism, which is outside the scope of
this article.

A Primer on Java Obfuscation

Java is not a secure language and its increasing use puts sensitive information at risk. While the authors do not recommend
Java software that involves sensitive information, the current reality is that Java is used in these applications. To address this
reality, this article discusses Java obfuscation techniques.

Gordon Evans
Missile Defense Agency

Stephen Torri, Derek Sanders, and Dr. Drew Hamilton
Auburn University

Software Engineering Technology

Control flow
obfuscation is a

technique that makes
use of additional code

and looping it to make it
difficult to understand

what is going on in such
a way that causes an
attacker to give up or
confuses a tool into
producing undesired

results.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
DEC 2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
A Primer on Java Obfuscation 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Missile Defense Agency (MDA),ATTN: MDA/BC,7100 Defense 
Pentagon,Washington,DC,20301 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
CROSSTALK The Journal of Defense Software Engineering, December 2007 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

5 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



20 CROSSTALK The Journal of Defense Software Engineering December 2007

JAVA Byte Code
Java is compiled from source files into
class files containing byte codes that are
later interpreted or compiled into machine
code at runtime in a JVM. The Java class
files present a potential security problem
since simply compiling the Java source
code does not do enough to secure it from
being recovered. Disassembly of the Java
byte code is easy to do with the tools pro-
vided by Sun Microsystems as a part of its
software development kit (SDK). For
example, the following is the classic Hello
World written in Java:

public class Hello {
public static void main ( String[] 

args )
{
System.out.println(“Hello
World”);
}

}

This example simply prints out the
string saying Hello World to the standard
console window. Compiling this program
with the javac compiler produces a Java
class file called Hello.class. This file is used
with the Java program to produce the
desired results. The Java class file can be
easily disassembled into a human readable
form using the javap [3] disassembler pro-
gram included in the Sun Microsystems
Java Development Kit (JDK).

For example, the following is the out-
put of Hello.class after running javap:

Compiled from “Hello.java”

class Hello extends 
java.lang.Object {

Hello();
Code:
0: aload_0
1: invokespecial #1; //Method 

java/lang/Object.”<init>”:()V
4: return

public static void 
main(java.lang.String[]);

Code:
0: getstatic #2; //Field java/   

lang/System.out:Ljava/io/
PrintStream;

3: ldc #3; //String Hello World
5: invokevirtual #4; //Method java/ 

io/PrintStream.println:
(Ljava/lang/String;)V

8: return
}

We have recovered enough informa-
tion that a developer with a tool such as
the Dava decompiler, (McGill University’s
Java decompiler) included in the Java opti-
mization framework called Soot [4], can
quickly obtain the original source code
seen in the following:

import java.io.*;

class Hello {

Hello() {
super();

}

public static void 
main(java.lang.String[] r0) {

System.out.println
(“Hello World”);

}
}
This example is a simple one but it illus-
trates the point. It can be seen that by
merely compiling a Java application with
the Sun JDK will not offer any protection
against decompiling the program. This is
why developers use obfuscation in order
to get some level of protection against
reverse engineering. Obfuscation makes it
harder, but not impossible, to reverse
engineer the code.

JAVA Obfuscation
Obfuscation works by confusing the flow
of the source code so it is difficult to
recover the intent of it. However, in order
to effectively show how obfuscation
works, a complex example is needed. The
following code is a function that takes an
integer value from the command line as an
argument and reports back the list of
Fibonacci1 numbers. For example, running
the command java Fibonacci 5 will give back
the calculated Fibonacci number for 5, 4,
3, and so on.

public class Fibonacci {

public int calculate (int n)
{

int output = 0;

if (n > 1)
{
output = calculate (n – 1) 

+ calculate (n – 2);
}
else
{

output = n;
}
return output;

}

public static void main ( String[] 
inc )
{
if (inc.length > 0)
{

Fibonacci f_ref = new 
Fibonacci();

int n = 
Integer.parseInt(inc[0]);

while ( n != -1 )
{
System.out.println

(“Calculated fibonacci
number: “ +
f_ref.calculate ( n ) );

n-;
}
}
return;
}

}

After using javap, the byte code prior
to obfuscation is shown in the following:

public int calculate(int);
Code:
0: iconst_0
1: istore_2
2: iload_1
3: iconst_1
4: if_icmple 26
7: aload_0
8: iload_1
9: iconst_1
10: isub
11: invokevirtual #2; //Method 

calculate:(I)I
14: aload_0
15: iload_1
16: iconst_2
17: isub
18: invokevirtual #2; //Method 

calculate:(I)I
21: iadd
22: istore_2
23: goto 28
26: iload_1
27: istore_2
28: iload_2
29: ireturn

The commercially available obfusca-
tion program called Zelix Klassmaster is
used to obscure the names of classes,
methods, and variables; encrypt any
strings; and complicate the control flow.
Though the nature of the program is hid-
den and obscured, the byte code is still
easy to read. The important blocks of
obfuscated byte code are explained in the
following:

public int a(int);

Software Engineering Technology



December 2007 www.stsc.hill.af.mil 21

Code:
0: getstatic #56; //Field A:Z
3: istore_3

The previous lines are loading the value of
a static variable from the class A, called Z,
onto the stack. The value is stored into the
third local variable (var_3 = A:Z).

4: iconst_0
5: istore_2

These instructions set the second local
variable to zero (var_2 = 0).

6: iload_1

This instruction loads the value of func-
tion parameter ‘n’ onto the stack.

7: iload_3
8: ifne 50

These instructions are checking to see
if var_3 (the third local variable) is not
equal to zero. If the statement returns true
then it will jump to label #50, otherwise it
continues to label #11. Though not seen
here, at label #50 the variable ‘output’ is
set to the value of variable ‘n’ and
returned.

11: iconst_1
12: if_icmple 49

At this point, the constant integer
value of ‘1’ is loaded onto the stack, which
is used to compare the value of the previ-
ous stack entry ‘n’ to 1. If ‘n’ is less than 1
then it will jump to label #49, otherwise it
continues to label #15. Label #49 is not
shown, but its instruction sets the variable
‘output’ equal to the value of variable ‘n’
and is returned. The two checks at lines 7-
8 and 11-12 that were performed are dif-
ferent from the original check in the un-
obfuscated code to see if variable ‘n’ was
greater than 1. The obfuscation program
has altered the control flow in an attempt
to obscure the nature of the function.

15: aload_0
16: iload_1
17: iconst_1
18: isub
19: invokevirtual #2; //Method 

a:(I)I

The function a:(I)I is the original func-
tion called calculate (int n) that returns an
integer result. This byte code loads an
object reference to the variable n, the
value of variable n and a constant integer
value of ‘1’ onto the stack. It then calcu-

lates n-1 and places the result on the stack.
The call to the function a:(I) with the
results is the last step. This is equivalent to
the function call of ‘calculate ( |n – 1| ).’

22: aload_0
23: iload_1
24: iconst_2
25: isub
26: invokevirtual #2; //Method 

a:(I)I

These instructions are similar to the
description above, except the function call
is equivalent to ‘calculate (n – 2).’

29: iadd
30: istore_2

At this point the results of ‘calculate (n
– 1)’ and ‘calculate (n – 2)’ are taken from
the stack, added together and the result is
placed back on the stack. This is similar to
‘calculate (n – 1) + calculate (n – 2)’. The
results are stored in var_2.

31: iload_3
32: ifeq 51
35: getstatic #58; //Field z:Z
38: ifeq 45
41: iconst_0
42: goto 46
45: iconst_1
46: putstatic #58; //Field z:Z

Shown here is a reference to the vari-
able Z from class z. However, notice that
the original program did not contain a sec-
ond class, but the obfuscator has added it
to obscure the meaning. Labels #31-32
compare the value of var_3 to zero. If
var_3 is equal to zero then the value of
var_2 (original variable called ‘output’) is
returned, otherwise, the comparison of
the variable ‘Z’ from the class ‘z’ is com-
pared to zero. If ‘Z’ is equal to zero then
the value of ‘Z’ is set to 1, otherwise zero.
These instructions are inserted by the
obfuscator as do nothing statements to
enhance the security and complicate deob-
fuscation forcing additional work to
obtain the original code.

49: iload_1
50: istore_2
51: iload_2
52: ireturn

Finally, the results of the function call
are returned to the original caller.

Even with obfuscation, anyone with
access to the Java class files has access to
the byte code and hence is capable of re-
versing the obfuscation process. The

LOCO project, which is designed to aide
a security analyst in understanding
obfuscated code, could be used for this
purpose. While the project is designed to
look at instructions on an x86 architec-
ture, a similar project designed for Java
byte code would be much simpler to
implement. This is due to the fact that
the number of instructions that are rep-
resented by Java byte code is consider-
ably less than the number of instruc-
tions for the x86 architecture. The weak-
nesses of obfuscation as shown with
these simple examples illustrate the need
for better protection against reverse
engineering. In addition, the impact of
obfuscation has on the performance of
the software must also be analyzed and
evaluated for acceptability. While many,
if not most, Java developers do not read
Java byte code, a determined adversary
can and will.

Cost of Obfuscation 
In order to effectively discuss obfuscation,
the impact of obfuscation on perfor-
mance with normal operations can not be
ignored. Low [5] states that obfuscation
should not alter the behavior of the pro-
gram, which is shown next:

Obfuscating Transformation
Let  P τ> P’ be a transformation of a source
program P into a target program P’.

P τ> P’ is an obfuscating transformation, if P
and P’ have the same observable behavior.
More precisely, in order for P τ> P’ to be a
legal obfuscating transformation the following
condition must hold:

• If P fails to terminate or terminates with
an error condition, then P’ may or may
not terminate.

• Otherwise, P’ must terminate and pro-
duce the same output as P.

The authors believe that changes to
the program’s control flow and the use of
string encryption will inadvertently affect
software performance. The degree of the
impact depends on the control flow
obfuscation method and encryption algo-
rithm used. The effect of name obfusca-
tion does not impact the run-time perfor-
mance of the system. To better under-
stand the impact of obfuscation, it must
be shown in terms of runtime in a formal
manner.

Control Flow Obfuscation 
Intuitively, obfuscating the control flow of
a Java program should incur some perfor-
mance cost as it is interpreted. Definition

A Primer on Java Obfuscation



Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering December 2007

1 defines a performance measure for con-
trol flow obfuscation delay.

Definition 1: Control Flow Obfuscation
Delay
Let Tocf = Tcf + α be an equation showing
the effects of obfuscation Tocf on original
system performance Tcf by time delay of
control flow obfuscation α. If Tocf ≤ Tcf,
then the obfuscation has either improved
the original performance of the program
or, at a minimum, met the original per-
formance. More accurately, the equation
is Tocf = Tcf + α , where α ≤ 0.
Alternatively, if α is greater than zero,
then the obfuscation has had a negative
effect on system performance.

An embedded system may have hard
real-time constraints which restrict how
much additional delay is allowed. By real-
time we refer to systems which will fail if
the executing software should miss a
deadline. The impact of obfuscation on
the execution of the program would
need to be measured – α in the equation
above – to determine if it is at an accept-
able level that does not degrade the sys-
tem performance or user experience.
That is, if Tocf > TL, where TL is a limit of
a real-time deadline or acceptable delay,
then control-flow obfuscation may pro-
duce more harm than good.

String Encryption 
String encryption on the other hand will
definitely not have an obfuscation effect
of zero. In the programs evaluated in [2],
three of them utilized string encryption.
The key used was stored in the program
file along with the decryption code. The
encrypted strings were either kept in the
program’s class files or had extra files
included in the Java jar file.

The time delay caused by decryption
depends on the encryption algorithm,
key length, and the plain text. The origi-
nal program had to access the location in
memory, where the original string was,
and return it to the place in the program

it was used (δ = Tr, where Tr is the
retrieval time). Compare this to the time
it takes to retrieve the encrypted string,
perform the decryption algorithm, and
return the plain text string (δ = Ter + Td

+ Tpr) where Ter is the time to retrieve the
encrypted string, Td is the decryption
time, and Tpr is the time to return the
string to the requester. Therefore, the
time required to process and return the
encrypted string should be greater than
that of a non-encrypted string.

Definition 2: Encrypted String
Obfuscation Delay 
Let Tes’ = Tps + δ show the effect of using
encrypted strings, Tes, on system perfor-
mance using plain strings, Tps, by the time
delay for encrypted string decryption, δ.
Then the time delay of decryption
should never be zero (δ > 0), therefore,
Tes ≠ Tps, since the act of decryption is
not an act that cannot be simply dis-
missed as some that can be ignored.
Some amount of time would be required
so it is more accurate to say Tes’ = Tps + δ
where δ > 0. The same restriction as
described in Definition 1 applies. If Tes >
TL, where TL is a limit of a real-time
deadline or acceptable delay, then the
time for decryption of the encrypted
strings is considered a hindrance to
acceptable program operations.

Combined Effects of Control Flow
Obfuscation and String Encryption 
The total performance impact of obfus-
cation can be determined by combining
Definitions 1 and 2.

Definition 3: Performance Effect of
Obfuscation 
Let T’ = T + α + δ show the effect of
both control flow (α) and string decryp-
tion (δ) have on the original system per-
formance. It is important to consider
both effects on performance since it is
important to not rely solely on one effect

for the protection of a program. Three
effects shown will have an effect on
security as well as an impact on perfor-
mance.

Test Results 
Four preliminary tests were conducted to
calculate the performance cost of vari-
ous methods of obfuscation. The tests
were conducted on a 3GHz Pentium 4
system running Fedora Core 6 system
using Java 1.6 to compile the program,
Zelix Klassmaster 5.0 trial version obfus-
cator, and GNU Compiler Collection
4.1.1 20070105 (Red Hat 4.1.1-51) to
compile the driver. A C++ driver pro-
gram was created to run the target Java
class file as the ‘root’ user on the system
for 50 times and calculate the average
number of central processing unit clock
cycles it took to execute the target class
file. The results for the tests can be seen
in Table 1.

The tests show that even for a simple
example the control flow obfuscation
and the string encryption has some
impact on the performance of the sys-
tem. None of the obfuscation methods
improved the performance of the target
application. The impact of obfuscation
must be analyzed as a part of develop-
ment in order to measure the impact on
system performance and user experi-
ence. Further testing and refinement of
these metrics will provide a means for
program managers to evaluate the per-
formance costs of the many different
Java obfuscators on the market (and in
the public domain.)

Conclusion
Obfuscation is a method (albeit imperfect)
to protect the intellectual property rights
of its creators. Obfuscation could also be
thought of as a method of protection
against reverse engineering by making it
difficult for a hacker to obtain a high-level
representation of Java source code in
order to make changes. Obfuscation does
not provide any sort of run-time protec-
tion like watermarking or calculated
checksums at periodic locations.

Organizations need to consider
strongly what information is being
released when a piece of software is dis-
tributed. It cannot be assumed that information
hard-coded into a program will not be retrieved.
This is of considerable importance when
evaluating software for release through
foreign military sales or other coalition
partner arrangements.

For those looking to secure their soft-
ware, there are professional tools available

Test Time
(cpu clock cycles)

Percentage
difference

Unobfuscated Fibonacci 2.7069 x 108 0%

Fibonacci program with aggressive
control flow obfuscation

2.71142 x 108 +0.17%

Fibonacci program with flow
obfuscation string encryption

2.71478 x 108 +0.29%

Fibonacci program with aggressive
control flow obfuscation and flow
obfuscation string encryption2

2.71356 x 10 +0.24%8

Table 1: Obfuscation Tests



A Primer on Java Obfuscation

December 2007 www.stsc.hill.af.mil 23

that make claims of high dependability.
Many companies offer tools for both Java
obfuscation as well as .NET obfuscation.
Additional claims of these tools are that
they reduce package size and increase effi-
ciency. Evaluation of these claims is on
our list of future work.

It is generally agreed that Java can be
reverse engineered. Obfuscation only slows
you down, but obfuscation also increases
the costs of reverse engineering sufficient-
ly to deter many economic motives for
reverse engineering. Anyone who dismisses
obfuscation has probably not tried to
reverse engineer non-trivial programs.
Reverse engineering of militarily sensitive
software is not constrained by the same
economics as commercial software.

Why is Java used in defense software?
Reducing development costs is one rea-
son. Often, after the software has been
delivered, there are compelling reasons to
make the software available under foreign
military sales. It is then too late to observe
that Java should not be used and translat-
ing millions of lines of code of Java into
something else is not a feasible option.
What do you do? Obfuscation certainly
does not solve this problem, but it is an
option that government program man-
agers acquiring software-intensive systems
should be aware of as well as the larger
issue of programming language selection
in terms of software requirements and
design.u

References
1. “LOCO: An Interactive Code

(De)Obfuscation Tool.” ACM SIG-
PLAN 2006 Workshop on Partial
Evaluation and Program Manipu-
lation, 2006.

2. “Cracking String Encryption in Java
Obfuscated Bytecode.” Subere 2006
<www.milw0rm.com/papers/117>.

3. “The Java Class File Disassembler.”
Java Sun <http://java.sun.com/j2se/
1.5.0/docs/tooldocs/windows/javap.
html>.

4. Miecznikowski, J., and L. Hendren.
“Decompiling Java Using Staged
Encapsulation.” Proc. of the 8th
Conference on Reverse Engineering,
2001.

5. Low, D. “Java Control Flow Obfusca-
tion.” Thesis. University of Auckland,
1998 <www.cs.arizona.edu/~collberg
/Research/Students/DouglasLow/>.

Notes
1. The Fibonacci numbers are the

sequence of numbers {Fn}n
∞ = 1

defined by the linear recurrence equation

Fn = Fn-1 + Fn-2 with F1 = F2 = 1. As a
result of the definition, it is conven-
tional to define F0 = 0. (Wolfram Math
Word <http://mathworld.wolfram.
com/FibonacciNumber.html>).

2. The average time of aggressive control
flow obfuscation and string encryption
is most likely due to the fact that the
control flow obfuscation has be opti-
mized in some manner.

About the Authors

Derek Sanders is a
graduate student study-
ing Data Networks and
Information Assurance
with Auburn University.
He is currently pursuing

his masters degree in software engineer-
ing. Sanders’ research interests include
the medium access control layer for
wireless communication, computer and
network security, and a wide selection of
issues related to securing wireless com-
munications.

Computer Science and 
Software Engineering
107 Dunstan Hall
Auburn University, AL 36849
Phone: (334) 844-7002
Fax: (334) 844-6329
E-mail: sandede@auburn.edu

Stephen Torri is a doc-
toral candidate at Au-
burn University. He has a
bachelor of science in
accounting, finance, and
computer science from

Lancaster University in the United
Kingdom and a master of science in
computer science from Washington
University in Saint Louis. Torri was an
electronics technician in the U.S. Navy’s
Nuclear Power Program as a reactor
operator aboard the USS Carl Vinson.

Computer Science and 
Software Engineering
107 Dunstan Hall
Auburn University, AL 36849
Phone: (334) 844-7002
Fax: (334) 844-6329
E-mail: torrisa@auburn.edu

Gordon Evans retired
from the U.S. Army in
1992 as a Lieutenant Col-
onel. During his military
service, he served in mul-
tiple field artillery, mili-

tary intelligence, and overseas assign-
ments. Since his retirement, Evans has
worked as an on-site consultant to the
Missile Defense Agency (MDA) where
his areas of concentrations include sys-
tems engineering, command and con-
trol, modeling and simulations, interna-
tional programs, and export control and
technology transfers. He has been the
lead MDA designer and investigator for
its modeling and simulation vulnerability
assessment program.

MDA
7100 Defense Pentagon
ATTN: MDA/BC 
Washington, D.C. 20301-7100
Phone: (703) 697-4582
Fax:  (703) 695-6133
E-mail: gordon.evans.ctr

@mda.mil

John A. “Drew” Ham-
ilton Jr., Ph.D., is an
associate professor of
computer science and
software engineering at
Auburn University and

director of its information assurance lab-
oratory. Prior to his retirement from the
U.S. Army, he served as the first director
of the Joint Forces Program Office and
on the staff and faculty of the U.S.
Military Academy, as well as chief of the
Ada Joint Program Office. Hamilton has
a bachelor’s degree in journalism from
Texas Tech University, masters degrees in
systems management from the Universi-
ty of Southern California and in com-
puter science from Vanderbilt University,
as well as a doctorate in computer sci-
ence from Texas A&M University.

Computer Science and 
Software Engineering
107 Dunstan Hall
Auburn University,  AL 36849
Phone: (334) 844-6360
Fax: (334) 844-6329
E-mail: hamilton@auburn.edu




